Thermodynamic Analysis of a Conceptual Fixed-Bed Solar Thermochemical Cavity Receiver–Reactor Array for Water Splitting Via Ceria Redox Cycling
نویسندگان
چکیده
We propose a novel solar thermochemical receiver–reactor array concept for hydrogen production via ceria redox cycling. The can improve the solar-to-fuel efficiency by realizing heat recuperation, reduction, and oxidation processes synchronously. A linear matrix model lumped parameter are developed to predict thermal performance of new system. system is characterized recovery effectiveness solid-phase efficiency. Investigated parameters include reduction temperature, oxygen partial pressure, number receiver–reactors, concentration ratio, gas-phase effectiveness. For baseline conditions, found be 81% 27%, respectively. perfect ratio 5,000, exceeds 40%.
منابع مشابه
Thermochemical CO2 splitting via redox cycling of ceria reticulated foam structures with dual-scale porosities.
Efficient heat transfer of concentrated solar energy and rapid chemical kinetics are desired characteristics of solar thermochemical redox cycles for splitting CO2. We have fabricated reticulated porous ceramic (foam-type) structures made of ceria with dual-scale porosity in the millimeter and micrometer ranges. The larger void size range, with dmean = 2.5 mm and porosity = 0.76-0.82, enables v...
متن کاملAnalysis of Solar Thermochemical Water-Splitting Cycles for Hydrogen Production
Approach • Review all published papers, reports, patents, etc. in the past 25+ years that relate to thermochemical water-splitting cycles, in general, and solar driven cycles, in particular. • Use FactSageTM program to perform chemical equilibrium calculations. • Employ HYSYS/ASPEN Plus chemical process simulation (CPS) program for developing process flowsheet, process analyses and optimization...
متن کاملSolar-Driven Thermochemical Splitting of CO2 and In Situ Separation of CO and O2 across a Ceria Redox Membrane Reactor
Splitting CO2 with a thermochemical redox cycle utilizes the entire solar spectrum and provides a favorable path to the synthesis of solar fuels at high rates and efficiencies. However, the temperature/pressure swing commonly applied between reduction and oxidation steps incurs irreversible energy losses and severe material stresses. Here, we experimentally demonstrate for the first time the si...
متن کاملSolar thermochemical splitting of water to generate hydrogen.
Solar photochemical means of splitting water (artificial photosynthesis) to generate hydrogen is emerging as a viable process. The solar thermochemical route also promises to be an attractive means of achieving this objective. In this paper we present different types of thermochemical cycles that one can use for the purpose. These include the low-temperature multistep process as well as the hig...
متن کاملThermochemical water splitting cycles
Two processes to effect splitting of the water molecule by means of an external heat source are competing for adoption, for the long-term production of hydrogen: high-temperature electrolysis, and splitting the water molecule through a succession of chemical reactions: a thermochemical cycle. Both processes form part of a strategy of voluntary reduction of greenhouse-gas emissions, and of alter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Energy Research
سال: 2021
ISSN: ['2296-598X']
DOI: https://doi.org/10.3389/fenrg.2021.565761